
57

3 Generic Test Automation Architecture

Test automation is not an end in itself, and should provide valuable 
information about the quality of the test object, thus enabling the 
organization and the team to make informed decisions at any point 
in time. This applies during the development of the test object and 
throughout the entire product lifecycle. Consequently, test automa-
tion is not only useful for testing during development, but also for 
maintenance testing. However, this also means that test automation 
itself must be maintained throughout the entire lifecycle while re-
maining cost effective. This is one of the greatest challenges a test 
automation engineer must face. 

3.1 Introducing Generic Test Automation Architecture 
(gTAA) 

This chapter describes a generic test automation architecture (gTAA) as 
defined in the ISTQB® Certified Tester Test Automation Engineer syllabus. 
The structure of this chapter is deliberately based on the corresponding 
chapter in the syllabus. It elaborates on the content therein, places it in a 
broader context, and supplements it with specific elements, such as a selec-
tion of relevant tools, case studies and, finally, an end-to-end example.

The gTAA specifies the basic layers, components, and interfaces that 
make up a typical test automation solution (TAS). It is intended as a basis 
for deriving a concrete test automation architecture (TAA) in a structured, 
modular, and reliable manner for a specific context.

The second half of the chapter addresses how the gTAA can be trans-
lated into a specific test automation architecture (TAA) and a test automa-
tion solution (TAS) based on that architecture.



3 Generic Test Automation Architecture58

3.1.1 Why is a Sustainable Test Automation Architecture important?

As already mentioned in previous sections, the main driver for the beneficial 
use of test automation is the cost of maintenance. Maintenance costs can be 
reduced using careful test case selection, and by automating the smallest 
possible set of meaningful test cases. Additionally, a sustainable and modu-
lar test automation architecture (TAA) also supports the long-term eco-
nomic viability of a test automation solution. Not only does such an archi-
tecture produce benefits during the maintenance phase, it also allows faster 
automated test case development, increased automation stability, and flexi-
bility in the face of changes to the technology stack or the test object. 

A modular architecture can also ensure reusability not only within a sin-
gle team or test object, but also within the wider organization. 

Not only the entire architecture, but also specific test automation ele-
ments (such as interface connections and tool configurations) can be reused 
across teams or organizations. This means that, alongside technology con-
nectors, teams can also use the automated test case building blocks that 
were created with them. This can be especially useful when test cases rely on 
data or actions that take place in other systems, or when building an auto-
mated system integration test suite. 

Meeting these requirements makes heavy demands on the TAE. In addi-
tion to testing and automation skills, the TAE should also have in-depth 
knowledge of the chosen development approach, programming standards, 
best practices, and the domain-specific context.

3.1.2 Developing Test Automation Solutions

A test automation solution (TAS) is a specific instance of a TAA and consists 
of the test environment and its corresponding automated testware. The lat-
ter includes automated test cases (which may be grouped into test suites), 
test data, and specific configuration files. A TAS is therefore not a mono-
lithic tool or framework, but rather a combination of tools, components, 
and testware brought together for the purpose of automating testing pro-
cesses. A test automation framework (TAF) (see section 1.4.4) can, however, 
be used to provide a test environment, tools, test libraries, or additional test 
frameworks that can then be reused for faster automated test creation and 
execution.

There are many factors to consider when developing a TAS. The focus 
when designing this type of TAS is on:

 Defining the functional and non-functional scope

 Defining the layers, services, and interfaces



593.1 Introducing Generic Test Automation Architecture (gTAA) 

 Developing automated test cases efficiently and effectively, using the 
simplest possible components

 Reusing elements for different technologies, tools, and test objects 
(for example, product lines)

 Simplifying maintenance and further development

 Fulfilling any other user requirements

This list also shows why the development of a test automation solution is a 
form of specialized software development: requirements, technical design 
and interfaces must be identified, specified, implemented, and of course 
tested. A test automation project is a software development project! It is 
therefore not surprising that the fundamental principles of software devel-
opment, the five SOLID principles according to Uncle Bob [Martin 00], 
must also be applied. 

S: The Single-Responsibility Principle

This principle dictates that each component fulfills one (and only one) 
clearly defined task, which is fully implemented and encapsulated in the 
component. In the context of a TAS, this can be the generation of specific 
test data, the execution of tests, the implementation of a specific business 
task, the connection to an interface, the logging of test actions, or the genera-
tion of a report.

A proven method for scoping a task is to think about the question: Why 
might this component require change?

As an example, let’s take a component that is responsible for generating 
a visually appealing and comprehensive report. What reasons could there be 
to change it? Perhaps the contents of the report need to be changed—for 
example, by adding a new field “Duration of test case”. Another reason 
might be a change in the layout—for example, altering the position of dia-
grams on the page. The fact that we have already identified two possible rea-
sons for change indicates that the “Single-responsibility principle” has been 
violated. Therefore, in our example, content provision needs to be separated 
from formatting by splitting the functionality between two separate compo-
nents.

Authors’ note: Since there is more than enough excellent material on the SOLID prin-
ciples, both in print and online, we will not provide a detailed description and code 
examples here. However, we will provide an overview and examples of their relevance 
in the context of a TAS. The SOLID principles are not explicitly identified as such in the 
syllabus, but the titles of the following subsections make it clear which sections are 
being referred to.



3 Generic Test Automation Architecture60

O: The Open-Closed Principle

Each component should be open to enhancements but closed for modifica-
tions. The goal is the ability to add functionality without affecting existing 
functionality, which is an important factor in maintainability and backward 
compatibility (i.e., the ability to support previous usage scenarios following 
a change).  

For example, a component is “open” if there is a way to add data or 
functionality to it. In an object-oriented context this can happen through 
polymorphism in several ways—for example, through interface definitions 
or inheritance. However, because the component shows no change exter-
nally, in both cases it is still “closed”. In the case of an interface, the signa-
ture remains stable, and, in the case of inheritance, the original class remains 
unchanged, so existing uses of this class are not affected. 

An example in the context of a TAS is the expandability of test interfaces 
to the SUT: It should be easy to make new areas and functionalities of the 
SUT accessible to new tests without negatively affecting existing ones.

L: The Liskov Substitution Principle 

Each component should be replaceable without affecting the overall behav-
ior of the TAS. This means that a component in use can be replaced by 
another component defined on the same basis (for example, a base class or 
interface) without affecting the system’s ability to produce the desired result. 
This implies that the usage of these components is compatible—in other 
words, all their features are appropriately implemented and the calling order 
of both components produces no contradictions.

Fig. 3–1 
Illustration of the Liskov 

Substitution Principle

Bird

Duck Eagle Penguin

Public abstract void fly ();

Public void fly (); Public void fly (); Public void waddle ();



613.1 Introducing Generic Test Automation Architecture (gTAA) 

A typical analogy is the “duck” example shown in the illustration. If a sys-
tem requires a “bird” component with the ability to fly, implementing 
“duck” can fulfill this role. In this case, “duck” can be replaced by other 
birds but not, for example, using “penguin”, which violates the substitut-
ability for “duck” because the “fly” functionality isn’t implemented. When 
an essential attribute isn’t implemented, you can no longer guarantee that 
the overall system will still work as intended.

In the context of a TAS, typical examples are the implementation of 
reporting mechanisms with interchangeable adapters for various types of 
reports and test management systems, or the control of multiple, inter-
changeable web browsers via a generic interface.

I: The Interface Segregation Principle

The interface segregation principle states that no component should depend 
on methods that it doesn’t need. To achieve this, it is helpful to design com-
ponents in a modular fashion so that they don’t contain too much function-
ality. This principle is closely related to the single responsibility principle 
described above. The goal is to keep dependencies clear, concise, and main-
tainable. 

This also relates to how interfaces should be designed in general. Within 
the scope of a TAS, examples that build on the keyword-driven test automa-
tion approach are the implementation of keyword libraries (a test case 
should not include keywords that are not actually used), or of capabilities in 
WebDriver/Selenium, which combines smaller interfaces that describe indi-
vidual functionalities and has a dictionary for managing which functional-
ities are required or available in the implementation. This way, the individ-
ual interfaces remain lightweight and consistent, and specific functionality 
can be added as needed.

D: The Dependency Inversion Principle

[Martin 00] states: Components on a higher architectural level should not 
depend on components on a lower level. Both components should use the 
same abstraction, while abstractions shouldn’t depend on implementation 
details. This leads to the required, forced separation of abstraction and 
implementation (or logic and technical details). In turn, this leads to looser 
coupling and increased replaceability.

In the context of a TAS, this principle affects many areas, such as the 
connection to the SUT, the design of keyword libraries, or the provision of 
reporting mechanisms. An example of a violation is the use of a specific 
browser in a test script that tests basic business logic. Launching the same 
test script with a different browser would require the script to be altered. 



3 Generic Test Automation Architecture62

Instead, an abstraction should be introduced for the connection to the 
browser and in the script, which improves both modularity and flexibility.

3.1.3 The Layers in the gTAA

As previously stated, a TAS should be implemented using the tried and 
trusted practices and principles of software development. In this context, the 
gTAA is seen as an abstract architecture that supports the design, operation, 
and maintainability of a TAS and the automated testware that either explic-
itly or implicitly underlies most of today’s test automation solutions. The 
gTAA is based on SOLID principles, regardless of whether a structured, 
object-oriented, or service-oriented development approach is preferred. It 
represents a vendor-neutral and technology-independent reference architec-
ture for deriving concrete TAAs and developing them into one or more 
TASs. It defines several horizontal, logical layers that not only represent the 
flow of certain activities and tasks (for example, test design comes before 
test execution), but also abstraction levels for the testware. These layers, 
which build on one another, are illustrated in figure 3–2.

Real-World Examples: 
Tool vs. automation solution
Test automation is often associated with commercial off-the-shelf products. The gTAA
can be implemented in many of these products, but it is important to note that the 
actual implementation of the gTAA is specific to the context of the application and to 
the artifacts created by the tool. Therefore, using a generic tool alone cannot guaran-
tee a systematically implemented gTAA, and we have to consider the actual context 
we”re using it in. 

For example, a conventional automation tool allows the implementation of test 
scripts and test cases, as well as the integration of external sources of test data. How-
ever, the tool itself cannot ensure that the test cases and test scripts fulfill the structure 
and principles of the gTAA. Appropriate training for, and a systematic approach by the 
people entrusted with automation are essential.

The gTAA also provides no information about how many and which tools, plug-ins, 
interfaces, libraries, and frameworks to use when defining a specific TAA. The gTAA is 
technologically neutral, vendor-independent, and not bound to a specific domain.

By its very definition, the gTAA is generic (the “g” in gTAA). In other words, it can be 
implemented using a wide range of tools, technologies, and patterns, and can be used 
for different domains, test objects, test objectives, and test levels if it is reflected in a 
specific TAA and implemented in a concrete TAS.

This viewpoint confirms once again that test automation is a form of specialized 
software development, and that corresponding skills and resources are necessary to 
provide and maintain both testing and the TAS—with its infrastructure and associated 
artifacts (such as documentation)—with an adequate level of quality.
Company-specific standards, such as code quality, documentation, or artifact and 
knowledge management are important in this context too.



633.1 Introducing Generic Test Automation Architecture (gTAA) 

Each1of these layers has specific tasks, which are summarized below:

 The test generation layer supports manual test case design or automated 
generation of test cases from models that define the SUT and/or its envi-
ronment

1. Note: The term “test suites” (on the test definition layer) is used in the illustration above 
in place of the term of “test procedures” that is used in the original illustration in the 
ISTQB® syllabus. This is because the term “test procedures” is not included in the official 
ISTQB® glossary and is not explained within the syllabus.

Project Management

Test Automation

Test Automation Framework (TAF)

Test Definition Layer

Test Execution Layer

Test Adaptation Layer

Test Generation Layer

Manual
Design

Test
Conditions

Test
Execution

G
U

I /
 C

LI

AP
I

Se
rv

ic
es

Pr
ot

oc
ol

s

D
at

ab
as

es

To
ol

s

Si
m

ul
at

or
s

Em
ul

at
or

s

...

Test
Logging

Test
Reporting

Test Data Test Libraries

Test
Cases

Test
Procedures

Specific logging
functionalities

SUT-specific
libraries

Automated 
Design

(Test Models)

C
on

fig
ur

at
io

n 
M

an
ag

em
en

t

Te
st

 M
an

ag
em

en
t

SUT

Fig. 3–2 
The generic test 

automation architecture 

(gTAA)1 [ISTQB: CT-TAE]



3 Generic Test Automation Architecture64

 The test definition layer supports the definition and implementation of 
abstract and concrete test cases and their components (test steps, test 
data)

 The test execution layer supports the execution and logging of tests

 The test adaptation layer supports the control of various interfaces that 
link the TAF to the SUT (for example, GUI, CLI, API; see also Chapter 1)

The gTAA also defines logical interfaces for integration with other tools 
related to test automation:

 Project management controls TAS development as a software project 
and its integration into the software lifecycle, as well as integration and 
synchronization with the SUT’s project management 

 Configuration management manages the configurations and versions of 
all relevant test tools and components in the TAS

 Test management provides test protocols, test results, and traceability, 
and enables test progress evaluation by the test manager

Since the layers of the gTAA are modular, individual layers can be built in 
various ways, depending on the environment. Certain layers may not be 
explicitly implemented in a TAS, and functionalities that belong to two lay-
ers are not always strictly separated. Furthermore, there may be additional 
levels of abstraction within each layer (for example, multi-level keywords 
where higher-level keywords are implemented by lower-level keywords, test 
data abstraction, and so on). Each layer can also potentially implement inte-
gration capabilities for external systems, often necessitating technology- or 
tool-specific code.

The generic character of this layered model enables us to build different 
TASs for a wide variety of use cases. This proven model is straightforward 
and in common use, especially for workflow-based functional testing. How-
ever, some use cases—load and performance testing, testing with large data 
sets, high-level parallelization, real-time requirements, machine learning, 
probabilistic systems, and so on—may require the model to be extended or 
modified. If the gTAA  itself requires modification, we recommended that 
you analyze the gTAA and make changes to it deliberately and carefully. 



653.1 Introducing Generic Test Automation Architecture (gTAA) 

Case Study: 
Testing a Data Warehouse System as a Gray Box
This case study uses an example to illustrate how the layers of the gTAA can interact, 
and how a TAS interacts with its environment. It also shows that the gTAA can form a 
basis for building a TAS, even in non-workflow-based test setups.

A highly automated testing approach was used for the group data warehouse of a 
large multinational bank. Part of this approach involved testing a large number of 
transformation rules for the massive data volume generated by each member of the 
banking group and their different core banking systems.
From the viewpoint of the layered gTAA model, the TAA underlying the developed TAS 
was structured as follows:

 Test generation 
Automated test cases were generated from a rule model derived semi-automati-
cally from semi-formal business transformation rules.

 Test definition 
Test generation produced abstract test cases, which implemented rules in tabular 
form for testing the results of the individual test data transformations in a pro-
grammatically executable manner. Concrete test cases were not available within 
this layer because the test data was only provided in an ad-hoc manner during 
execution.

 Test execution
The test execution layer took test data defined and provided in the test definition 
layer, controlled the loading of the database, executed the transformation pro-
gram provided by the development team and checked the results against the 
expected result rules. Discrepancies were logged and the test results, associated 
log files, and test protocols were imported into the company‘s test case manage-
ment system.

 Test adaptation
The relevant interfaces were accessed via adapters to load the database and the 
transformation programs, and to check the results. Various adapters were used on 
this layer due to the different systems used by different members of the banking 
group.

Further gTAA components were also implemented to embed testing as seamlessly as 
possible in the development process:

 Project management
The implementation of the TAS was embedded within the company as a separate 
software development project in the DW testing domain. This included planning, 
requirements gathering, implementation and quality assurance as well as go-live, 
maintenance, and enhancement activities. The implementation and refinement 
were largely carried out using the “water-scrum-fall” agile method. The project 
management and resource management system were used to plan automation 
activities, test data procurement, and test execution. Resulting defects were man-
ually entered into a defect management system. A technical connection between 
the defect management system and the TAS wasn’t necessary. 





3 Generic Test Automation Architecture66

The layer model is often implemented from the bottom up—in other words, 
starting at the lowest layer and working upward to the uppermost layer. In 
contrast, top-down implementation (i.e., from the upper, more abstract lay-
ers to the lower, more technical layers) is another widely used approach that 
places increased focus on the writing style of automated test cases.

The Individual Layers in Detail

This section compares the individual layers of the gTAA and describes the 
differences between them. It also describes their functionalities and sup-
ported test activities, and lists concrete examples of tools that can typically 
be found (or used) within each layer.2

 Configuration management
A file-based configuration structure was created for configuring the framework, 
loading the test data into the correct databases, performing the correct transfor-
mations, and validating against the expected results. The company‘s standardized 
versioning system was used to manage the TAS code base and the configuration 
files. As a result, all artifacts that implement each of the layers were integrated into 
the common configuration management structures and processes. The com-
pany‘s test management tool was used to manage and historize test results and 
reports.

 Test management
The TAF was connected to the company‘s test management tool on the test exe-
cution layer. The expected results were mapped as test cases, and each time they 
were executed, a corresponding execution object (including its detailed results) 
was logged in the test case management section. This made reports, metrics, and 
an overall view of the test cases and their results available at any time. These 
reports were the main source of information for test progress reports and served 
as the basis for release go/no-go decisions within the test management and 
release process.

2. The tools listed are selected for their symbolic value and easy recognition with respect to 
the layer in question. They are not intended as specific recommendations and do not rep-
resent a universal solution.



673.1 Introducing Generic Test Automation Architecture (gTAA) 

Tools for:

 Designing test cases

 Defining and managing test data

 Automatically generating test cases

Functionality:

 Traceability to requirements or models

 Modeling and configuration for automatic test case generation

Description:

The test generation layer is the uppermost layer of the gTAA and thus has 
the highest level of technical abstraction. It is used to capture test case con-
tent, test data and test suites, and the traceability of these to other relevant 
elements of the test basis, such as the requirements or test items that make 
up the test object.

The term “test generation” will of course make many readers think of 
model-based testing. In this case, a model is derived from requirements, pro-
cesses, or the SUT, which is itself used as the foundation for deriving test 
cases according to certain criteria. In many cases, this type of automated test 
case generation can be associated with the test generation layer. For exam-
ple, it includes creating the necessary models for defining or configuring the 
generation algorithms and establishing traceability for the resulting test 
cases. In some cases, individual test steps are even assigned to the model ele-
ments from which they originated.

If manual test case design is facilitated on an abstract level (for example, 
visually or via text-based, but domain-specific formats or domain-specific 
languages (DSLs)), this is also considered to be part of the test generation 
layer. This includes managing such test suites and test cases (i.e., navigating 
through structures, updating, deleting, and so on), as well as documentation 
management. 

The same applies to the development, collection, or derivation of test 
data or their technical basis. This includes both manual and automated 
approaches to test data generation, and linking test data to the underlying 
requirements or test cases.

Typical tools:

 Gherkin feature file editors

 Tricentis Tosca TestCase-Design 

 MBTsuite 

Fact Sheet: Test Generation Layer
Project Management

Test Automation

Test Automation Framework (TAF)

Test Definition Layer

Test Execution Layer

Test Adaptation Layer

Test Generation Layer

Manual
Design

Test
Conditions

Test
Execution

G
U

I /
 C

LI

AP
I

Se
rv

ic
es

Pr
ot

oc
ol

s

D
at

ab
as

es

To
ol

s

Si
m

ul
at

or
s

Em
ul

at
or

s

...

Test
Logging

Test
Reporting

Test Data Test Libraries

Test
Cases

Test
Procedures

Specific logging
functionalities

SUT-specific
libraries

Automated 
Design

(Test Models)

C
on

fig
ur

at
io

n 
M

an
ag

em
en

t

Te
st

 M
an

ag
em

en
t

SUT



3 Generic Test Automation Architecture68

Tools for:

 Defining test cases, test conditions, test data

 Specifying test procedures

 Defining test scripts

 Accessing test libraries

Functionality:

 Partitioning, restricting, parameterizing, and instantiating test data

 Specifying, parameterizing, and grouping test sequences and test 
behavior patterns

 Documenting test cases, test data, test procedures

 Test suite and test case design, test case management and documentation

Description:

While the test generation layer deals with test case and test data design and 
management, the test definition layer contains abstract or concrete test 
cases, test data, test procedures, and the corresponding scripts or code mod-
ules (for example, keyword implementations). Tool support for the creation, 
management, and provision of test suites, test cases, code modules, and 
scripts is also part of this layer. Here, the focus is not on automatic defini-
tion, but rather on the actual implementation and the creation of the corre-
sponding structures. Thus, data-driven or keyword-driven test cases (or 
“test flows”) also belong to this layer.

Components implemented within this layer can support both the imple-
mentation and documentation of these elements at a lower level (for exam-
ple: technical scripts or code modules, concrete manifestations of test data), 
and the selection and specification of these elements (for example: partition-
ing, grouping, parameterization, instantiation of test suites, test cases, or 
test data).

If this takes place after generation but before execution, this can also 
include the “concretion” or “detailing” of test cases (i.e., the addition of 
concrete test data to abstract test cases), 

Typical tools:

 Gherkin features files & step definitions

 Tricentis Tosca Modules & TestCases

 TestNG test suites

Fact Sheet: Test Definition Layer
Project Management

Test Automation

Test Automation Framework (TAF)

Test Definition Layer

Test Execution Layer

Test Adaptation Layer

Test Generation Layer

Manual
Design

Test
Conditions

Test
Execution

G
U

I /
 C

LI

AP
I

Se
rv

ic
es

Pr
ot

oc
ol

s

D
at

ab
as

es

To
ol

s

Si
m

ul
at

or
s

Em
ul

at
or

s

...

Test
Logging

Test
Reporting

Test Data Test Libraries

Test
Cases

Test
Procedures

Specific logging
functionalities

SUT-specific
libraries

Automated 
Design

(Test Models)

C
on

fig
ur

at
io

n 
M

an
ag

em
en

t

Te
st

 M
an

ag
em

en
t

SUT



693.1 Introducing Generic Test Automation Architecture (gTAA) 

Tools for:

 Automatically executing test cases

 Logging test executions

 Documenting test cases, test data, and test runs

Functionality:

 Setting up, instrumenting, and cleaning up the SUT and test suites

 Configuring and parameterizing the test environment

 Interpreting test data and test cases, and translating them into 
executable scripts

 Analyzing and validating the SUT’s reactions to the tests

 Scheduling test execution

Description:

The test execution layer is in many ways the core of a TAS. It implements the 
actual execution of the test cases, and thus controls interactions of the TAS 
with its environment (mainly the SUT).

On this layer, the test suites, test cases, and test steps defined in the test 
definition are interpreted and processed in the specified sequence, and test 
execution is logged. This layer also implements the parallelization of test 
suites, test cases, and test steps. Another common practice on this layer is 
the interpretation (often referred to colloquially as “flattening”) of test data 
or keywords into concrete, executable test steps.

This layer also includes automated checking of preconditions for the 
execution of automated tests, as well as any corresponding cleanup tasks. 
This includes setting up and cleaning the SUT and the database, setting TAS 
parameters and checking the correctness of the test environment based on 
their configuration. The application of further elements of a test framework 
(for example, the orchestration of the SUT for technical validations, fault 
injection, or performance measurements) are also implemented in this layer.

The core goal of a test execution is a test result, either pass or fail. This 
makes it necessary to compare the actual behavior of the SUT with its 
expected behavior. This comparison (validation) of the SUT’s reactions to 
the test steps is also the responsibility of the test execution layer. Alongside 
comparison, test execution logging is essential too, especially in the case of 
failure. Deviations and details of the failed comparison between actual and 
expected behavior, as well as further processing of an escalation (for exam-
ple, screenshots, inclusion in a report, or a possible error message) are part 

Fact Sheet: Test Execution Layer
Project Management

Test Automation

Test Automation Framework (TAF)

Test Definition Layer

Test Execution Layer

Test Adaptation Layer

Test Generation Layer

Manual
Design

Test
Conditions

Test
Execution

G
U

I /
 C

LI

AP
I

Se
rv

ic
es

Pr
ot

oc
ol

s

D
at

ab
as

es

To
ol

s

Si
m

ul
at

or
s

Em
ul

at
or

s

...

Test
Logging

Test
Reporting

Test Data Test Libraries

Test
Cases

Test
Procedures

Specific logging
functionalities

SUT-specific
libraries

Automated 
Design

(Test Models)

C
on

fig
ur

at
io

n 
M

an
ag

em
en

t

Te
st

 M
an

ag
em

en
t

SUT



3 Generic Test Automation Architecture70

of this layer too, as are importing test results into test management tools and 
generating reports.

Typical tools:

 JUnit runner

 Cucumber runner

 Tricentis Tosca TestPlanning & Execution

Tools for:

 Controlling the test framework

 Interacting with the SUT

 Monitoring the SUT

 Simulating and emulating (parts of) the SUT’s environment

Functionality:

 Accessing the adapter that corresponds to the technology

 Execution of actions based on supported technologies

 If necessary, distribution of test execution among multiple devices

Description:

From a technical point of view, the test adaptation layer is the bottom layer 
and therefore usually contains many technology-specific elements. In most 
TASs, the higher layers are implemented in a technology-agnostic way for 
reasons that include:

 Enabling cross-system or cross-product testing 

 Improving long-term maintainability in the face of technology changes

 Swapping out test tools

 Ensuring reusability across systems

 Ensuring reusability across teams and people

Despite all the technical abstractions, it is of course essential for automated 
testing to interact with the SUT at some point. This interaction takes place 
via the existing test interfaces and usually involves two typical activities 
(previously discussed in section 1.5.1):

Fact Sheet: Test Adaptation Layer
Project Management

Test Automation

Test Automation Framework (TAF)

Test Definition Layer

Test Execution Layer

Test Adaptation Layer

Test Generation Layer

Manual
Design

Test
Conditions

Test
Execution

G
U

I /
 C

LI

AP
I

Se
rv

ic
es

Pr
ot

oc
ol

s

D
at

ab
as

es

To
ol

s

Si
m

ul
at

or
s

Em
ul

at
or

s

...

Test
Logging

Test
Reporting

Test Data Test Libraries

Test
Cases

Test
Procedures

Specific logging
functionalities

SUT-specific
libraries

Automated 
Design

(Test Models)

C
on

fig
ur

at
io

n 
M

an
ag

em
en

t

Te
st

 M
an

ag
em

en
t

SUT



713.1 Introducing Generic Test Automation Architecture (gTAA) 

 Controlling the SUT (for example, clicking a button or invoking a REST 
service)

 Observing the SUT (for example, reading a text field or receiving a REST 
response)

In both cases, a technology-specific implementation of the corresponding 
activity is necessary. The logical or abstract actions are connected to the SUT 
via an adapter. 

Alongside the adaptation of controllability and observability of the SUT, 
the implementation and control of other elements of the test framework (for 
example, simulators and emulators, or monitoring and surveillance solu-
tions) are part of the test adaptation layer too.

In the case of parallelization or multi-device testing, tools for the provi-
sion and management of appropriate (available) devices for running tests 
can also be found in this layer.

Typical tools:

 Selenium, Selenium Grid

 Appium, Ranorex

 Xamarin.UITest

 BrowserStack

3.1.4 Project Managing a TAS

Developing a TAS is a software development and rollout project. In addition 
to simply distributing the TAS, the development, integration, and rollout of 
the associated processes are also essential aspects and factors that contribute 
to the success of test automation. As with all software projects, decisions 
that have to be made for a test automation project include:

 Who are the stakeholders and users?

 What are the goals of the project?

 Which processes are influenced by the solution?

 Which conditions are required or are already in place?

 Which approach will the development project take?

 Which resources are needed?

 Which deliverables are planned?

 How can the TAS be efficiently quality assured?

Test automation often takes place in the context of a software development 
project, or in an environment in which software development takes place. 



3 Generic Test Automation Architecture72

Therefore, the answers to many of these questions (especially in procedural 
and process-based/technical contexts) are usually present in the form of 
existing elements—for example, a standard procedure, a given technology 
stack, or existing project management tools.

If this is not the case—for example, if an organization purchases soft-
ware from a vendor and decides to automate acceptance regression testing—
test automation may be one of the first development projects the organiza-
tion undertakes. This can be challenging and should not be underestimated, 
and it is important to ensure that there is sufficient focus on, and expertise 
dedicated to the subject.

Test automation development involves all the same activities that are 
relevant in a conventional software development lifecycle, so establishing 
the highly qualified role of the test automation developer is a key factor.

Furthermore, the development project should be set up so that impor-
tant information regarding goals, use of resources, progress, results, and 
obstacles can be accessed quickly and easily, thus providing plenty of timely 
opportunities to retain control of the project during its lifetime. Automating 
the aggregation of this information (for example, using a dashboard) can be 
very helpful (see Chapter 5).

Real-World Examples: 
Illustrating the TAS management process
A TAA is to be developed using an agile approach based on Scrum. The architecture is 
to be used by the various application teams within the organization, each of which 
has its own TAEs. Thus, a central TAA will be developed, which will then be used for the 
implementation of several TASs.

In a series of workshops with stakeholders (for example, the SUT’s product owner, 
management, test automation engineers from the teams), the product owner (in this 
case the test manager) collects epics for the TAS and describes them in the task-track-
ing system. These epics are then prioritized in the backlog. The epics in the backlog 
are broken down into stories and implemented by the TAE. After each sprint, the appli-
cation teams receive a new version of the TAS that the TAEs use to define and execute 
regression tests for their particular SUT. Any bugs that occur are also reported to the 
backlog and prioritized there.

Rule communication and general procedures are applied according to Scrum 
(estimations, sprint planning, daily Scrum, sprint review, sprint retrospective, board, 
backlog prioritization, backlog refinement, and so on). This also provides continuous 
control of focus activities according to the current priorities. A dashboard enables all 
stakeholders to stay informed about the status of the project. Additionally, the TAA 
provides deliverable dashboard templates for the regression tests performed by the 
individual teams.



733.1 Introducing Generic Test Automation Architecture (gTAA) 

3.1.5 Configuration Management in a TAS 

A TAS is mostly used to test different versions of a SUT. The TAS itself there-
fore needs to be adapted and modified over time. This aids its evolution 
while ensuring that it remains compatible with different versions of the SUT. 
If this compatibility is not ensured, test execution results won’t be represen-
tative and will, in turn, require a great deal of analysis and maintenance 
effort.

This makes the configuration management of the TAS in conjunction 
with the SUT an essential success factor for sustainable test automation. 

This affects all aspects of a TAS, including:

 Models

 Test definitions (test data, test cases, libraries)

 Test scripts

 Test execution components

 Test adaptation components

 Simulators and emulators

 Test protocols

 Test reports

 Bug reports

TAA, TAS and automated testware versions must be aligned in order to 
obtain meaningful results, and each of these elements should be securely ver-
sioned to ensure traceability and reproducibility. Knowledge management 
(for example, for documenting the TAS), task tracking (for activity trace-
ability), a test case management tool (for test results and reports), and code 
version management (for automation artifacts) are often combined to 
record and manage all important artifacts in a controlled and versioned 
fashion.

However, operational management is not the only prerequisite for pro-
active version management. The communication flow within the project, 
and between it and its environment, should also be designed in such a way 
that information on changes to the SUT, the process, or the infrastructure 
can be actively communicated to the TAEs so that they can act and imple-
ment appropriate changes to the TAS. If it isn’t, the TAE will end up per-
forming defect analysis for failed test runs, only to discover that planned 
changes were made somewhere by someone, but were never communicated 
properly.



3 Generic Test Automation Architecture74

3.1.6 Support for Test Management and other Target Groups

Since test automation is a type of software development that takes place 
within the software testing domain, test management is usually a major 
stakeholder and, ultimately, the end user. Test automation should therefore 
provide valuable information for test managers, but also benefit the entire 
team and the organization.

As a result, the information generated by automated testing should be 
prepared in a way that is specific to its target group. The design of test case 
definitions, documentation, and other artifacts should also be structured to 
meet user requirements. Ultimately, all relevant artifacts should be prepared 
with their target group in mind. These include:

 Reports

 Logs

 Metrics

 Test suites

 Test definitions

 Documentation

 Information collected about the SUT

This requires the definition of result artifacts and, often, the implementation 
of integrations—for example, with test case management tools. The results 
of these are then managed by configuration management.

3.2 Designing a TAA

Following on from the description of the gTAA (see section 3.1) and how a 
TAS interacts with the surrounding processes (configuration management, 
project management, test management), this section addresses the question 
of how a TAA can be designed to suit a specific project situation.

To begin, we will address several fundamental questions on the basics of 
TAA design. However, the answers to these questions are only valid within 
the context of a specific project and/or organization. This is why relevant 
approaches to test case automation (see section 3.2.2), technical considera-
tions regarding the SUT (see section 3.2.3), and issues surrounding the 
development and quality assurance processes (see section 3.2.4) are then 
reviewed and discussed in relation to the initial questions.



753.2 Designing a TAA

3.2.1 Fundamental Questions

The design of a specific TAA is based on fundamental questions that, implic-
itly or explicitly, anticipate certain design decisions and thus guide the 
design process. Depending on which layer of the gTAA we are looking at, 
both the underlying considerations and the possible implications can change 
from case to case.

What Are the Requirements for the TAA?

As with other software development projects, it is important to keep in mind 
that there are multiple sources of requirements that have different expecta-
tions regarding the TAA design, and therefore need to be considered accord-
ingly. For example, do established processes require integration with other 
systems (such as test management, project management, and others)? Which 
stakeholder expectations regarding information provided by the TAS—for 
example, those of the test executor, the test analyst, the test architect, or the 
test manager—have to be considered and supported by the TAA? Which test 
types needs to be supported?

For example, a TAA designed for automated component regression test-
ing, which is only used by a team of developers (for unit testing), will look 
fundamentally different from a TAA designed for automated system integra-
tion testing, where stakeholders from different areas (and without develop-
ment experience) need to understand the test specifications and be able to 
create new test cases by themselves.

The following sections use a set of concrete requirements defined for a 
fictional scenario:

 In a complex system landscape with various partially connected subsys-
tems, a system integration test is to be implemented to identify as early 
as possible any regressions caused by the deployment of new systems 

 The relevant subsystems are very diverse in terms of technology, and 
include modern web applications, client-server architectures, and legacy 
systems run on host infrastructures

 To increase efficiency, test automation components created during sys-
tem testing within the individual systems should be reusable for system 
integration testing 

 Detailed defect analysis logs of test results and the corresponding appli-
cation logs are to be centrally archived and published using the com-
pany-wide test management tool

 Creation, ongoing maintenance, and further development are the 
responsibility of a dedicated team


